
A mean-field description of two-phase flows
with phase changes

Daniel Lhuillier *

Laboratoire de Mod�eelisation en M�eecanique, Universit�ee Pierre et Marie Curie et CNRS,
8, Rue du Capitaine Scott, 75015 Paris, France

Received 25 November 2001; received in revised form 15 December 2002

Abstract

A new version of the two-fluid model is developed, specially devoted to liquid–vapour two-phase mix-

tures, but also relevant to liquid-gas and liquid–liquid mixtures. It is well-known that, over a large range of

volume fractions, liquid–vapour mixtures behave as dispersions of particles in a carrier fluid. But the

‘‘particles’’ belong to one phase at the beginning of the phase change, and to the second phase at the end.

Within the present model, the dispersed phase is not prescribed at the outset but is merely the one with the

lower volume fraction. To simplify the issue, surface tension and interfacial properties are neglected.
However, the differences of pressure, temperature and velocity between the two phases are taken into

account. The exchanges of mass, momentum and energy between phases are split into a ‘‘mean-field’’ part

corresponding to the average conditions imposed by the whole mixture on the dispersed phase, and a part

specifically due to the disturbances created by the particles. Constraints on constitutive relations are ob-

tained from the overall dissipation rate, and result in a closed set of seven equations for seven state vari-

ables including one volume fraction. We insist on the general form of the equations but not on the details of

the closure relations. The limits of this simple model are clearly stated, and we discuss possible improve-

ments, including a better account of small-scale kinetic phenomena, as well as an eighth equation for the
density of interfaces.
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1. Introduction

The two-fluid model for two-phase mixtures is established on firm grounds (Ishii, 1975; Nig-
matulin, 1979; Drew, 1983) and is sufficiently general to be able to describe any type of mixtures.
The price to pay for its generality is its lack of suitability for dispersed mixtures in which one
phase appears in the form of particles dispersed throughout the second phase. In fact, many
researchers (Buyevich and Schelchkova, 1978; Nigmatulin, 1979; Prosperetti and Jones, 1984)
have long admitted the necessity of deriving a two-fluid model in a form specially suited to dis-
persed mixtures. If we consider the momentum balance for example, the recent work by
Marchioro et al. (1999) is the last descendant of a long series of works that distinguish the par-
ticulate phase from the carrier fluid phase. The same status can be given to the work by Zhang and
Prosperetti (1997) concerning the energy balance. While these recent results are quite motivating,
they are still not suitable for liquid–vapour mixtures in which the particles are vapour bubbles at
the beginning of the boiling process and liquid drops at the end. We would like to have a ‘‘sym-
metric’’ system of equations which acknowledges for the existence of a dispersed phase while not

prescribing at the outset which phase it is. We here give some hints towards a new version of the
standard two-fluid model. In this new version, the two phases are placed on an equal footing but
the interactions between phases involve a mean-field contribution which depicts the mean con-
ditions in which the minority phase is embedded. As a result, whenever one of the two phases
happens to be dilute, the new set of equations looks very much like that for a dispersed mixture.
Although simplistic in that it neglects the role of all kinds of small-scale fluctuations, the mean-
field model takes into account phase transitions as well as the differences of pressure, temperature,
chemical potential and velocity between the two phases. Since this model relies in part on ther-
modynamic considerations, we first review in Section 2 the thermodynamics of two-phase mix-
tures, insisting on the underlying assumptions. Then we turn to the general form of the mean-field
equations of motion in Section 3, and consider the kinetics of phase transitions and its conse-
quences in Section 4. Section 5 will dwell on the total dissipation rate and on the way the two
phases are sharing the total dissipation. Section 6 will sum up the results and will give an example
of unusual results concerning the momentum balances, while Section 7 will consider the necessary
extensions of this first-step model. The link between the standard two-fluid model and its mean-
field version, as well as the definitions of the mean-field quantities in terms of averaged small-scale
quantities, are presented in Appendix A.

2. Thermodynamics of a multi-phase mixture

The thermodynamic relations of a multi-phase (or multi-component) mixture are presented in
well-known text-books (Ishii, 1975; Nigmatulin, 1990). We write them to clarify our list of
symbols, but above all to stress on the underlying assumptions. The thermodynamic behaviour of
a given phase (or component) in the mixture is supposed to be similar to the behaviour of the pure
phase, provided the space sharing is taken into account through the use of volume fractions. This
fundamental assumption, when written for the unit mass of a phase labelled n, appears as

en ¼ ln þ Tnsn � ð/n=qnÞpn and den ¼ Tn dsn � pn dð/n=qnÞ ð1Þ
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with the consequence

dln ¼ ð/n=qnÞdpn � sn dTn: ð2Þ
Here, ln, Tn and pn are the chemical potential, temperature and pressure of phase n, en and sn are
the internal energy and entropy per unit mass, while /n is the volume fraction and qn is the ap-
parent mass per unit volume of the mixture, so that qn=/n is the true mass per unit volume of pure
phase n. The above thermodynamic relations hold for fluid-like phases. They also hold for solid-
like particles, provided they undergo homogeneous compressions or expansions only (i.e. one
excludes any change of shape), and in that case the pressure must be understood as the trace of the
elastic stress.

The total mass, total momentum, total entropy and total energy per unit volume of the mixture
are defined as

q ¼ Rnqn; ð3Þ
qV ¼ RnqnVn; ð4Þ
qs ¼ Rnqnsn ð5Þ

and

qe ¼ Rnqnðen þ 1
2
V 2
n Þ; ð6Þ

where Vn is the mean velocity of component n. The above relations are well-known and have a
rather intuitive meaning but the assumptions which underlie them are very restrictive:

• all interfacial phenomena are neglected,
• energy and entropy of mixing are neglected,
• all fluctuations around Vn are neglected,
• all fluctuations around ln, Tn and pn are neglected.

The first restriction means that all the effects connected with surface tension are neglected. The
second one means we exclude colloidal suspensions and consider particles with a size larger than
about ten micro-meters. The third one means we neglect the ‘‘added-mass’’ kinetic energy and the
pulsation kinetic energy in case of bubbles. Let us comment on the fourth restriction and consider
the temperature field of phase n for example. Tnðx; tÞ is to be understood as the average tem-
perature at point x and time t. A ‘‘point’’ in the mixture can be figured out as a tiny volume
containing all components and within this tiny volume the local temperature of phase n is likely to
display spatial variations and time fluctuations. When writing the above thermodynamic rela-
tions, all the details of the small-scale temperature field were supposed to be irrelevant except for
its average value. The same assumption was made concerning the pressure field and the chemical
potential field. The irrelevance of any moment but the average is a very strong assumption un-
derlying (1), (2) and (6). In what follows we will use this thermodynamic description and will
neglect all kinds of small-scale fluctuations. Hence, we will be concerned mainly with the mod-
elling of a collision-free and non-Brownian dispersed two-phase mixture, without surface tension
or any other interfacial properties. These assumptions seem stringent at first sight, but they are
necessary to build up a (first step) comprehensible model.
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3. The mean-field equations of motion of a two-phase mixture

3.1. What we (should) all agree on

There is a general agreement on the way to write the conservations laws for the total mass, total
momentum, total energy as well as the balance law for the total entropy of the mixture. These
equations are shared by all types of continuous media and can be presented as

dq=dt þ qr � V ¼ 0; ð7Þ
qdV=dt þr � P ¼ qg; ð8Þ
qde=dt þr � ½V � P þQ	 ¼ qg � V ð9Þ

and

qds=dt þr �H ¼ D; ð10Þ
where P is the mixture stress tensor, Q is the mixture energy flux, H is the mixture entropy flux,
while g is the external force field per unit mass and D is the (positive) entropy production rate. V is
the mixture velocity defined in (4) and d=dt is defined as d=dt 
 o=ot þ V � r. There is also a
general agreement on the way to express the mass balance for each phase. For a two-phase
mixture, they are generally presented as

oq1=ot þr � q1V1 ¼ �C; ð11Þ
oq2=ot þr � q2V2 ¼ C; ð12Þ

where C ¼ CN þ CG is the mass exchange rate due to phase transitions. This mass exchange comes
from nucleation processes (CN) and from growth at already existing interfaces (CG). From defi-
nitions (3) and (4), it is clear that the sum of the two above mass balances results in the overall
conservation law expressed in (7).

3.2. The primary phasic balance laws

3.2.1. Momentum balance
The mean-field type of equations were first proposed by Nigmatulin (1979). They are here

written in a slightly modified form

q1d1V1=dt ¼ /1ð�rp þr � sÞ � F� CðV� � V1Þ þ q1g; ð13Þ
q2d2V2=dt ¼ /2ð�rp þr � sÞ þ Fþ CðV� � V2Þ þ q2g; ð14Þ

where dn=dt 
 o=ot þ Vn � r (n ¼ 1, 2). Note that the sum of these two balances gives back the
conservation law (8) with

P ¼ pI � s þ ðV2 � V1Þ � J; ð15Þ
where I is the unit tensor while J is the relative mass flux between the two phases

J ¼ ðq1q2=qÞðV2 � V1Þ: ð16Þ
The right-hand side of the above momentum balances contain four contributions. The contri-
bution of gravity needs no further comment. The contribution due to phase transitions displays
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the average impulse CV� of the mass exchanged between the two phases. An expression for V� in
terms of V1 and V2 will be obtained in Section 4. The two remaining contributions mean that each
phase interacts with the other through a mutual interaction force F (precisely defined in Appendix
A), and through the ‘‘mean-field’’ stress pI � s created by both phases. The force associated with
the mean-field stress acts on each phase in proportion to their volume fraction. This mean stress is
made of a viscous stress s and a pressure stress involving the mean pressure

p ¼ /1p1 þ /2p2: ð17Þ
This way of writing the interphase momentum exchange can also be understood as a splitting
between a generalized Archimedes force, and all the other forces gathered into F. While the
presence of rp in the Archimedes force is not a surprise, the presence of r � s is a little bit more
puzzling. In fact, as will be seen in Section 5, this presence is necessary for the viscous stress s to
depend on the gradients of the volume-averaged velocity of the mixture (Batchelor, 1970)

U ¼ /1V1 þ /2V2 ð18Þ
and not on the gradients of the mass-averaged velocity V. This role of U can be understood as
follows: the small-scale viscous stress tensor depends on the small-scale velocity gradient rv�.
Since the averaging procedure involves the probabilities of presence (and nothing connected to the
phase densities), the mixture viscous stress will depend on hv1rv1�þ v2rv2�i. And since the small-
scale velocity is continuous on the interfaces, the mixture viscous stress ultimately depends on the
gradient of hv1v1�þ v2v2�i, i.e. on the gradient of the above-defined U. It is clear that when the
same averaging procedure is applied to quantities like q�v� (which depend explicitly on densities),
the result will involve V and not U. This is why V appears in the average momentum whilerU has
to appear in the average mixture stress.

3.2.2. Entropy balance

The mean-field evolution equations are

q1d1s1=dt ¼ D1 � /1r � h� R � Cðs� � s1Þ; ð19Þ
q2d2s2=dt ¼ D2 � /2r � hþ R þ Cðs� � s2Þ; ð20Þ

where Dn is the (positive) entropy production rate inside phase n while h is the averaged entropy
flux created by both phases. These balance equations are the extension for non-dilute mixtures of
Michaelides and Feng (1996) approach of the transient heat transfer on a single particle. These
authors have split the total heat exchange into a bare (undisturbed) part which exists in the ab-
sence of the particle, and a perturbation part induced by the particle. Here, /nr � h plays the role
of the bare part and R the role of the particle perturbation. Note that, as a result of definition (5),
the two above balances imply the overall entropy balance (10) with

D ¼ D1 þ D2 and H ¼ hþ ðs2 � s1ÞJ: ð21Þ
The analogous roles of h and pI � s is made clear when comparing (15) and (21). There is no
interfacial entropy production in conformity with our neglect of all interfacial quantities. The
entropy exchanges linked to phase transitions are represented by Cs�, and s� will be given an
explicit expression in Section 4. The entropy exchanges at the interfaces are split into a mean-field
part involving r � h and a part R representing the remaining contributions (a definition of R in
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terms of averaged small-scale quantities is given in Appendix A). As will be seen later on, this role
of r � h is also necessary for the thermal dissipation to depend on the gradients of the mixture
temperature defined as

T ¼ /1 T1 þ /2 T2: ð22Þ

This role of T in the mixture heat flux has the same origin as the role of U in the mixture viscous
stress. It can be understood after noticing that the small-scale heat flux is proportional torT �, the
gradient of the small-scale temperature. The averaging procedure will express the mean heat flux
in terms of hv1rT1�þ v2rT2�i, i.e. in terms of the gradient of the above-defined temperature T
(taking into account the continuity of the small-scale temperature at interfaces).

3.2.3. Volume fraction balance

The mean-field evolution equations are

o/2=ot þr � /2V2 ¼ /2r �Uþ Aþ C=q�;

o/1=ot þr � /1V1 ¼ /1r �U� A� C=q�:
ð23Þ

Note that these two equations are not independent of each other because of the constraint
/2 þ /1 ¼ 1. We wrote the second equation just to stress on the similarities of structure with the
momentum and entropy balances. The velocity U plays for the volume fractions a mean-field role
similar to that of h and pI � s. Basically, the above equations mean that the volume fractions are
transported with the same velocity as the mass, and that two processes influence their evolution:
the first one is linked to the mass exchange (phase transformations) and it involves a mass density
q� to be determined in Section 4. The second one represents the role of the mixture compress-
ibility. This role is expressed with two terms, one of them linked to the ‘‘mean-field’’ compress-
ibility r �U, and the other by A. The definition of A in terms of small-scale quantities is given in
Appendix A.

3.3. The secondary balance laws

All the other balance laws can be deduced from the above basic ones.

3.3.1. Internal energy

Taking the thermodynamic relations (1) into account, one easily deduces the evolution of the
internal energies

q1d1e1=dt ¼ T1½D1 � /1r � h� R � Cðs� � s1Þ	 � p1½/1r �U� A� Cð1=q� � /1=q1Þ	;
q2d2e2=dt ¼ T2½D2 � /2r � hþ R þ Cðs� � s2Þ	 � p2½/2r �Uþ Aþ Cð1=q� � /2=q2Þ	:

3.3.2. Total energy
The evolutions of the kinetic energies are a direct consequence of the momentum balances and

are obtained from the dot product of (13) with V1 and (14) with V2. A mere addition of the
evolutions equations for the kinetic and internal energies leads to the evolution equations for the
total phasic energies e1 þ ð1=2ÞV 2

1 and e2 þ ð1=2ÞV 2
2 . Summing these two equations we obtain
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q1d1=dtðe1 þ 1
2
V 2
1 Þ þ q2d2=dtðe2 þ 1

2
V 2
2 Þ þ Cðe2 þ 1

2
V 2
2 � e1 � 1

2
V 2
1 Þ

¼ T1D1 þ T2D2 � s : ðrUÞs þ h � rT þ ðV2 � V1Þ � Fþ ðT2 � T1ÞR � ðp2 � p1ÞA
þ C½l2 � l1 þ s�ðT2 � T1Þ � ð1=q�Þðp2 � p1Þ þ ðV1 � V �Þ2=2� ðV2 � V �Þ2=2	
þ r � ½U � s � pU� Th	 þ qg � V;

where ðrUÞs is the symmetric gradient of the volume-averaged velocity while rT is the gradient
of the volume-averaged temperature. The overall energy being defined as in (6), the above result
must be compatible with the conservation law (9). This forces the total dissipation rate to be
expressed as

T1D1 þ T2D2 ¼ s : ðrUÞs � h � rT � ðV2 � V1Þ � F� ðT2 � T1ÞR þ ðp2 � p1ÞA
� C½l2 � l1 þ s�ðT2 � T1Þ � ð1=q�Þðp2 � p1Þ þ ðV1 � V �Þ2=2� ðV2 � V �Þ2=2	:

ð24Þ
Moreover, the energy flux appearing in (9) is found to be related to h, s and J in the form

Q ¼ Thþ ðV�UÞ � ðs � pIÞ þ ½e2 � e1 þ ð1� 2c2ÞðV2 � V1Þ2=2	J: ð25Þ
We have now written the complete set of equations describing a two-phase mixture. This set is
composed of the seven equations (11)–(14), (19), (20), (23) for the seven fundamental variables q1,
q2, V1, V2, s1, s2 and /2. These equations contain six yet undetermined quantities s, h, F, R, A and
C which appear in the six contributions to the total dissipation rate (24). The clear meaning of
these six contributions, together with the role of rU and rT are arguments in favour of the
proposed equations. For the set of equations to be closed, one has (a) to express s�, q� and V� in
terms of the seven basic variables, (b) to propose constitutive relations for s, h, F, R, A and C, and
(c) to split the total dissipation rate into its components T1D1 and T2D2.

4. Kinetics of phase transitions

According to the dissipation rate (24), the thermodynamic force driving the phase transitions is
a rather complicated expression involving s�, q� and V� together with the differences l2 � l1,
T2 � T1, p2 � p1 and V2 � V1 (see also Nigmatulin (1990) and H€uutter (2001) for different ap-
proaches with similar conclusions). On physical grounds, one expects this thermodynamic force to
depend on the deviation from saturation conditions. For small deviations, we expect it to be
proportional to the difference p � pSðT Þ or TSðpÞ � T where p and T are the average pressure and
temperature defined in (17) and (22), while pSðT Þ is the saturation pressure at temperature T and
TSðpÞ the saturated temperature at pressure p. For this proportionality to appear, one must adopt
the special values

s� ¼ /1s2 þ /2s1; ð26Þ
1=q� ¼ /1ð/2=q2Þ þ /2ð/1=q1Þ ð27Þ

and

V� ¼ ðV1 þ V2Þ=2; ð28Þ
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so that one can write for moderate deviations from equilibrium

l2 � l1 þ s�ðT2 � T1Þ � ð1=q�Þðp2 � p1Þ þ ðV1 � V �Þ2=2� ðV2 � V �Þ2=2
� ð/2=q2 � /1=q1Þðp � pSðT ÞÞ � ðs2 � s1ÞðTSðpÞ � T Þ:

In the limit of a very small /2, phase 2 is the dispersed phase and from (26) and (27) one finds
s� ¼ s2, q� ¼ q2=/2. Conversely, when /1 is small, s� ¼ s1, q� ¼ q1=/1. These are results conform
to intuition. On intuitive grounds also, one would expect the velocity V� of the exchanged mass to
be that of the dispersed phase. However, this intuition is correct only for the mass grown from
already existing particles. At variance, because of the small size of nuclei, the nucleated mass
appears with the velocity of the dominant phase and so, it is not obvious to assess what V� should
be. Let CN be the mass exchange rate due to nucleation processes. Then, CG ¼ C � CN represents
the mass grown from already existing interfaces. It is likely that CG appears with the velocity
/1V2 þ /2V1 (see also Appendix A) while the nucleated mass appears with the average mixture
velocity, let us say with U. Then, the momentum exchange due to mass exchange is presumably

CV� ¼ CGð/1V2 þ /2V1Þ þ CNU ð29Þ
and result (28) corresponds to the special case CN ¼ CG ¼ C=2. While the factor 1/2 is dubious,
the trend is correct. Moreover, were V� different from ðV1 þ V2Þ=2, the thermodynamic force
would not vanish at saturation, i.e. whenever p ¼ pSðT Þ or T ¼ TSðpÞ. Hence, it could be possible
to induce phase transitions in a saturated mixture just because of the relative motion between the
two phases. To avoid this unphysical role of the relative velocity we cannot but adopt the Sol-
omonic value (28) for V�.

5. Results from thermodynamics of irreversible processes

The second law of thermodynamics requires the total entropy production rate D1 þ D2 to be
positive. In the present modelling of dissipative processes the only quantity we obtain unambig-
uously is the dissipation rate T1D1 þ T2D2, and it is this quantity that will be required to be positive

T1D1 þ T2D2 P 0:

There are many ways to meet that requirement. We present below the simplest one in which the
six contributions to the entropy production rate (24) are considered as mutually independent

s ¼ 2gðrUÞs;
Th ¼ �krT ;
F ¼ �/1/2nðV2 � V1Þ;
TR ¼ �/1/2bðT2 � T1Þ;
A ¼ /1/2aðp2 � p1Þ;
C ¼ cpð/1=q1 � /2=q2Þðp � pSðT ÞÞ ¼ cT ðs1 � s2ÞðTSðpÞ � T Þ:

ð30Þ

The transport coefficients g, k, n, b, a, cp and cT are all supposed to be positive while the /1/2

factor is to remind that the related quantities stem from exchanges at the interfaces and disappear
whenever one of the two phases disappears. We refrained from applying this /1/2 factor to C
because of the nucleated mass which can appear even when /1/2 ¼ 0. On dimensional grounds,
one expects the following relations
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n � g=R2; b � k=R2; a � 1=g; cp � 1=gð/1=q1 � /2=q2Þ
2
; ð31Þ

where R is some microstructure length (the particle size for dilute mixtures) and the � sign means
that the two quantities are proportional to each other, the proportionality factor being a non-
dimensional but otherwise undetermined number.

Combining the constitutive relation for C with cp as given in (31) leads to

C � ½gð/1=q1 � /2=q2Þ	
�1ðp � pSðT ÞÞ:

Hence, the mass of the discrete phase increases if the continuous fluid is lighter and the mixture
is supersaturated (p > pSðT Þ) or if it is denser and the mixture is depressurised (p < pSðT Þ). This
expression for C reminds of the Hertz-Knudsen formula deduced from a kinetic theory ap-
proach. In fact, kinetic theory suggests that the mass exchange rate depends not only on
p � pSðT Þ but also on the temperature difference (Takata et al., 1998). This means a coupling
between C and R which was not taken into account by the simplest expressions (30). In fact,
more general flux-force relationships can be written because the Curie symmetry principle (De
Groot and Mazur, 1962) allows a coupling between the two vectors F and h on one hand, and
between the three scalars A, R and C on the other hand. These general relations are lengthy and
will not be written, but a representative example of unusual coupling will be given at the end of
Section 6.

We have now constitutive relations for all the unknown terms appearing in the phasic balances
with one exception: the entropy dissipation rates D1 and D2. We know what the total dissipation
rate is, but how to share it between the two phases? The dissipation connected to s and h is
distributed all over the mixture and has contributions from both phases. It seems natural to split it
according to the volume fractions of the respective phases. The dissipation connected with the
inter-phase exchanges F, R, A and C is localized close to the interfaces, but for a dilute mixture it is
concentrated mostly on the continuous phase side. For non-dilute mixtures we will suppose that
the dissipation in inter-phase exchanges is also shared according to the respective volume frac-
tions. Hence we propose, for want of something better,

T1D1 ¼ /1½T1D1 þ T2D2	 and T2D2 ¼ /2½T1D1 þ T2D2	: ð32Þ

6. The mean-field model

The final form of the balance equations is

oq1=ot þr � q1V1 ¼ �C;

oq2=ot þr � q2V2 ¼ C;

o/2=ot þr � /2V2 ¼ /2r �Uþ Aþ C=q�;

q1d1V1=dt ¼ /1ð�rp þr � sÞ � Fþ CðV1 � V2Þ=2þ q1g;

q2d2V2=dt ¼ /2ð�rp þr � sÞ þ Fþ CðV1 � V2Þ=2þ q2g;

q1d1e1=dt ¼ /1½s : ðrUÞs � h � rT þ ðV1 � V2Þ � F	 � T �R � /1T1r � hþ p�A
� /1p1r �Uþ Cðe1 � l� � T �s� þ p�=q�Þ;

q2d2e2=dt ¼ /2½s : ðrUÞs � h � rT þ ðV1 � V2Þ � F	 þ T �R � /2T2r � h� p�A
� /2p2r �U� Cðe2 � l� � T �s� þ p�=q�Þ;

ð33Þ
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where all stared quantities are defined in analogy with (26) and (27)

T � ¼ /1T2 þ /2T1; p� ¼ /1p2 þ /2p1 and l� ¼ /1l2 þ /2l1: ð34Þ
Note that we have written the internal energy balances instead of the entropy balances just be-
cause most previous works have insisted on internal energy rather than entropy. Note however
that the internal energy balances have a somehow complex writing because they result from both
the entropy and volume fraction balances.

The second law of thermodynamics requires s, h, F, R, A and C to satisfy the inequality

s : ðrUÞs � h � rT � F � ðV2 � V1Þ � RðT2 � T1Þ þ Aðp2 � p1Þ
� Cð/2=q2 � /1=q1Þðp � pSðT ÞÞP 0: ð35Þ

It is to be stressed that the set of constitutive relations compatible with (35) is amazingly rich. The
simplest example was given in (30), but we already mentioned a possible dissipative coupling
between the two vectors F and h on the one hand, and between the three scalars A, R and C on the
other hand. These couplings were dictated by the Curie symmetry principle which holds for
isotropic systems. In case the mixture has a non-uniform concentration, isotropy is destroyed and
the number of possible couplings is much enlarged. We consider below a coupling which is
particularly important when calculating the velocity profile of flowing mixtures with non-uniform
concentrations. This (rather unusual) coupling concerns F and s and can be presented in the form

F ¼ �n � ðV2 � V1Þ � C � ðrUÞs;
s ¼ g : ðrUÞs þ ðV2 � V1Þ � C:

The coupling displays the Onsager symmetry (De Groot and Mazur, 1962) which is here repre-
sented by the third-order tensor C (with Cijk ¼ Cikj), while n is a second-order non-symmetric
mobility tensor and g is a fourth-order completely symmetric viscosity tensor. It happens that
such a coupling is the way the shear-induced diffusion phenomena come into play. The shear-
induced diffusion can be separated into a longitudinal diffusion (Wang and Mauri, 1999) and a
transverse diffusion (Leighton and Acrivos, 1987). The longitudinal diffusion is basically a two-
particle process while the transverse diffusion involves a minimum of three particles. In what
follows we consider longitudinal diffusion only and, to provide a simple example, we limit our
discussion to the dilute case (/2 � 1) for which the above expressions simplify into

F ¼ �n � ðV2 � V1Þ � cg1/2ðrUÞs � r/2;

s ¼ g1ð1þ 5
2
/2ÞðrUÞs þ cg1/2½ðV2 � V1Þ � r/2	

s
;

where c is a numerical constant close to unity and slightly depending on the type of flow repre-
sented by ðrUÞs (Wang and Mauri, 1999). The explicit form of the drag and lift forces associated
with the dilute-limit expression for n will not be written. It is astonishing that the extra stress
tensor associated with longitudinal shear diffusion has exactly the form proposed long ago by Ishii
(1975). Needless to say that the /2r/2 dependence of this extra stress, characteristic of a two-
particle process, could not be anticipated by Ishii. Hence, despite its apparent simplicity, the
dissipation rate (35) can cope with many physical phenomena. The issue is to combine results
from micro-hydrodynamics to write the most general form of s, h, F, R, A and C, and then check
that these expressions are compatible with (35). The mean-field model is only a new framework in
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which constitutive relations must be introduced. It is of no help for finding new closure relations
except for the constraint (35). But it is helpful in presenting balance equations in a form which
acknowledges that the mixture is a dispersion when one of the volume fractions is very small and
which proposes a reasonable interpolation when the mixture is non-dilute.

7. Concluding remarks

The thermodynamic description of a two-phase mixture is still in its infancy and denies any role
to the fluctuations of the main thermodynamic variables. The balance equations cannot but reflect
that simplicity. With this in mind, we have developed a closed set of seven balance equations
specially devoted to two-phase mixtures with phase changes. The concept of a mean-field influence
of the embedding fluid, which was previously used for the momentum balances only, has been
systematically applied to the other balances laws. The resulting model has the advantage of being
thermodynamically consistent but it relies on stringent assumptions. Among the four main re-
strictions listed in Section 2, the first three ones can be easily released as follows.

The energy and entropy of mixing are important when dealing with colloidal suspensions of
micron-sized particles. They were taken into account by Lhuillier (2001) but with the assumption
of equal pressure and equal temperature between the two phases. The main novelty (as compared
to the present model) is a non-dissipative contribution to F that accounts for concentration-
diffusion as well as thermo-diffusion.

The fluctuations relative to the mean velocity play an important role in the analysis of added-
mass effects or when considering the pulsating motion in a bubbly fluid. The way to deal with
these phenomena is to replace (6) by

qe ¼ Rnqnðen þ 1
2
V 2
n þ 1

2
hðDvnÞ2iÞ

and to write the fluctuating kinetic energy in terms of the seven basic variables of the mean-field
model. It appears that the added-mass kinetic energy induces non-dissipative contributions to s

and F, while the pulsation kinetic energy induces non-dissipative contributions to s and A
(Nigmatulin, 1990; Zhang and Prosperetti, 1994).

Up to that point, the number of equations was kept unchanged in spite of the various im-
provements. Restoring interfacial quantities is likely to introduce three new balance laws on the
interfaces. The number of equations would thus be increased up to ten unless one considers a
temperature-dependent surface tension as the only interfacial quantity, and one makes some
simplifying assumption concerning the temperature of the interfaces.

It has long been suggested that to take into account the coalescence or break-up of particles, an
equation describing the evolution of the density of interfaces was compulsory (Ishii, 1975; Del-
haye, 2001). The reason is that coalescence and break-up are volume and mass conserving so they
cannot be involved in the balances of mass or volume. Another reason is that the intensity of some
inter-phase exchanges are not easily expressed in terms of the seven basic variables only. And this
is the case in particular for F and R which, according to (31), involve some microstructure length
scale R: for our mean-field set of equations to be closed, one must in fact simulate the co-
alescence and break-up phenomena by relating this length scale to the volume fraction, and the
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actual relation is far from evident. As a bonus for introducing the area density as an eighth
variable (governed by an eighth evolution equation) is the simplicity with which the interfacial
energy is taken into account. Hence, an eight-equation model is likely to supersede the present
model but many of the above results will need minor modifications only to cope with this ex-
tension.

Appendix A. Statistical basis of the mean-field model

A.1. Evolution of the volume fraction

The two phases share the total volume, so that /1 þ /2 ¼ 1 and we focus on the volume
fraction of phase 2 for example. Phase 2 is characterized by its (Heaviside-like) function of
presence v2ðx; tÞ with v2 ¼ 1 when point x is occupied by phase 2 at time t and v2 ¼ 0 otherwise.
This (small-scale) function of presence satisfies the two relations

rv2 ¼ �n2dI and ov2=ot þ vI � rv2 ¼ 0; ðA:1Þ
where dIðx; tÞ is the (Dirac-like) function of presence of the interfaces between the two phases, vI is
the velocity of these interfaces and n2 is the normal to the interfaces which points outwards phase
2. From the above two relations one deduces

ov2=ot þr � ðv2v2�Þ ¼ v2r � v2�þ ðvI � v2�Þ � n2dI ;

where v2� is the small-scale velocity of phase 2. The volume fraction /2 is a coarse-grained
quantity which is nothing but the statistical average hv2i. Taking the statistical average of the
above equation one obtains

o/2=ot þr � hv2v2�i ¼ hv2r � v2�i þ hðvI � v2�Þ � n2dIi:

Introducing the function of presence v1 ¼ 1� v2, the small-scale velocity v1� of phase 1, and the
unit vector n1 ¼ �n2, one can manipulate the right-hand side of this equation and transform it
into

o/2=ot þr � hv2v2�i ¼ /2r � hv1v1�þ v2v2�i þ /1hv2r � v2�i � /2hv1r � v1�i
þ /1hðvI � v2�Þ � n2dIi � /2hðvI � v1�Þ � n1dIi: ðA:2Þ

We insist that (A.2) is not a true balance equation but a mere consequence of the topological
relations (A.1). The issue is to prove that the mean-field equation (23) is a consistent approxi-
mation for the exact equation (A.2).

The mean fluxes qnVn and the rate of mass exchange CG at interfaces are defined as

qnVn ¼ hvnqn�vn�i and � hq1�ðvI � v1�Þ � n1dIi ¼ hq2�ðvI � v2�Þ:n2dIi ¼ CG;

where qn� is the small-scale mass density of phase n. The thermodynamic description presented in
Section 2 supposes that the mean pressure and mean temperature are pertinent quantities but not
their fluctuating parts. Accordingly, one can neglect the small-scale fluctuations of qn� and write
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qn� ¼ qn=/n whether at interfaces or in the bulk of phase n. Hence, for coherence with the
thermodynamic description one is led to the following approximations:

hvnvn�i � /nVn; hðvI � v2�Þ � n2dIi � CG/2=q2 and hðvI � v1�Þ � n1dIi � �CG/1=q1:

From definitions (18) and (27) together with the following definition of A:

A ¼ /1hv2r � v2�i � /2hv1r � v1�i
it is clear that (A.2) is transformed into

o/2=ot þr � /2V2 ¼ /2r �Uþ Aþ CG=q
�: ðA:3Þ

Result (A.3) does not include the role of nucleated volume. For dilute suspensions, the nucleated
mass presumably appears with the mass density of the dilute phase. We infer that, for non-dilute
suspensions, the volume exchange due to nucleation is closer to CN=q� than to any other value.
Adding this contribution to the right-hand side of (A.3), one obtains the mean-field evolution
equation (23).

A.2. Evolution of entropy

The statistical average of the small-scale entropy balance of phase n is

oqnsn=ot þr � ðqnsnVnÞ þ r � hvnqn�s0v0i ¼ hvnDn�i � hvnr � hn�i þ hqn�sn�ðvI � vn�Þ � nndIi;
where superscript � means a small-scale quantity and a prime 0 means a fluctuation relative to
the mean values sn or Vn. Dn� is the entropy production rate and hn� is the entropy flux of phase
n. In what follows we focus on one phase, say phase 1. Instead of the standard two-fluid model
based on the identity hv1r � h1�i 
 r � hv1h1�i þ hh1� � n1dIi, we will start from an alternative
identity

hv1r � h1�i 
 /1r � hv1h1�þ v2h2�i þ /2hv1r � h1�i � /1hv2r � h2�i
þ /1ðhh1� � n1dIi þ hh2� � n2dIiÞ:

Taking into account the boundary condition on the interfaces (remember we neglect any inter-
facial quantity including the interfacial entropy production), the entropy balance of phase 1 can
be presented in the form

oq1s1=ot þr � ðq1s1V1Þ þ r � hv1q
�
1s

0v0i
¼ hv1D1�i � /1r � hv1h1�þ v2h2�i � /2hv1r � h1�i þ /1hv2r � h2�i
� /1hq2�s2�ðvI � v2�Þ � n2dIi þ /2hq1�s1�ðvI � v1�Þ � n1dIi: ðA:4Þ

With the definitions

D1 
 hv1D1�i; h 
 hv1h1�þ v2h2�i; R 
 /2hv1r � h1�i � /1hv2r � h2�i
and the approximations bound to the neglect of small-scale fluctuations

hv1q1�s0v0i � 0; hq2�s2�ðvI � v2�Þ � n2dIi � CGs2; hq1�s1�ðvI � v1�Þ � n1dIi � �CGs1

it is clear that the entropy balance of phase 1 becomes
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oq1s1=ot þr � ðq1s1V1Þ ¼ D1 � /1r � h� R � CGs�; ðA:5Þ
where s� is defined in (26). Since the entropy of the nucleated mass is that of the dispersed phase
for dilute mixtures, it is likely to be s� for non-dilute ones and the contribution �CNs� is to be
added on the right-hand side of (A.5). We thus recover the entropy balance written in (19). The
entropy balance (20) of phase 2 is obtained by a similar method.

A.3. Evolution of the momentum

The statistical average of the small-scale momentum balance is

oqnVn=ot þr � ðqnVnVnÞ þ r � hvnqn�v0v0i ¼ hvnr � rn�i þ hqn�vn�ðvI � vn�Þ � nndIi þ qng;

where rn� is the small-scale stress of phase n. Following the procedure used above for the entropy
balance, we find that the momentum balance of phase 1 can be written in the form

oq1V1=ot þr � ðq1V1V1Þ þ r � hv1q1�v0v0i
¼ /1r � hv1r1�þ v2r2�i þ q1gþ /2hv1r � r1�i � /1hv2r � r2�i
þ /2hq1�v�1ðvI � v1�Þ � n1dIi � /1hq2�v2�ðvI � v2�Þ:n2dIi: ðA:6Þ

With the definitions

s � pI 
 hv1r1�þ v2r2�i; F 
 /1hv2r � r2�i � /2hv1r � r1�i
and the approximations

hv1q1�v0v0i � 0; hq2�v2�ðvI � v2�Þ � ndIi � CGv2; hq1�v�ðvI � v1�Þ:n1dIi � �CGv1;

one obtains the mean-field approximation for (A.6)

oq1V1=ot þr � ðq1V1V1Þ ¼ /1ðr � s �rpÞ � F� CGð/1V2 þ /2V1Þ þ q1g: ðA:7Þ

This equation does not take the nucleated momentum into account. For a dilute mixture the
nucleated mass appears with the velocity of the continuous phase (due to the quite small nucleus
size). For a non-dilute mixture, it is likely to appear with the mean velocity U defined in (18).
Hence, a contribution �CNU is to be added to the right-hand side of (A.7). The modified form of
(A.7) is thus in agreement with (13) provided CV� is defined like in (29). It was shown in Section 4
that the special value V� ¼ ðV1 þ V2Þ=2 is the only one for which the mass exchange is driven by
the deviations from saturation exclusively.
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